BACKPAPER: ALGEBRA I

Date: January 2, 2018

A ring would mean a commutative ring with identity.

- (1) (8+8=16 points) Mention all the options which are correct. No justification needed.
 - (a) The composition factors of a finite nontrivial group are:
 - (i) cyclic groups
 - (ii) simple groups
 - (iii) Alternating groups
 - (iv) finite groups
 - (b) Let G be a finite group, H be a subgroup and P a Sylow p-subgroup of G for a prime number p. Then
 - (i) $H \cap P$ is a Sylow *p*-subgroup of *H*.
 - (ii) $H \cap P$ is a Sylow *p*-subgroup of *H* if *H* is a normal subgroup.
 - (iii) None of the above.
- (2) (14 points) Prove or Disprove. There is a unique group of order 77 up to isomorphism.
- (3) (15 points) Let p be a prime and $|G| = p^n$ for some n > 0. Show that the center of G is non trivial.
- (4) (5+15=20 points) Define local ring. Show that the power series ring R[[X]] is a local ring if R is a local ring.
- (5) (5+15=20 points) Let R be a ring. Define noetherian R-module. Let $0 \to A \to B \to C \to 0$ be a short exact sequence of R-modules. If A and C are noetherian module show that B is noetherian R-module.
- (6) (15 points) Let R be a subring of $\mathbb{R}[t]$ strictly containing \mathbb{R} . Show that $\mathbb{R}[t]$ as an R-module is finitely generated.